Numerical solver for the time-dependent far-from-equilibrium Boltzmann equation

نویسندگان

چکیده

The study of strongly out-of-equilibrium states and their time evolution towards thermalization is critical to the understanding an ever widening range physical processes. We present a numerical method that for first allows solution most difficult part time-dependent Boltzmann equation: full scattering term. Any number bands (and quasiparticles) with arbitrary dispersion, any high order channels (we show here four legs scatterings: electron-electron scattering) can be treated far from equilibrium. No assumptions are done on population all Pauli-blocking factors included in phase-space term scattering. straightforwardly interfaced deterministic solver transport. Finally critically, conserves machine precision particle number, momentum energy resolution, making computation till complete possible. apply this approach two examples, metal semiconductor, undergoing laser excitation. These cases, which literature hitherto under approximations, addressed free those approximations within same method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of time-dependent foam drainage equation (FDE)

Reduced Differental Transform Method (RDTM), which is one of the useful and effective numerical method, is applied to solve nonlinear time-dependent Foam Drainage Equation (FDE) with different initial conditions. We compare our method with the famous Adomian Decomposition and Laplace Decomposition Methods. The obtained results demonstrated that RDTM is a powerful tool for solving nonlinear part...

متن کامل

Solution of Time-dependent Boltzmann Equation

The time-dependent Boltzmann equation (BE) is solved in a two-term and a multi-term approximation in order to study the time evolution of the electron energy distribution function (EEDF) in argon plasma in a constant electric field. The initial distribution is taken to be isotropic Gaussian distribution, its center is set to the area of increasing elastic collision cross-section in order to stu...

متن کامل

Time–Dependent Rescalings and Dispersion for the Boltzmann Equation

Using the notion of time-dependent rescalings introduced in [DR], we prove explicit dispersion results. The main tool is a Lyapunov functional which is given by the energy after rescaling and the entropy dissipation. The relation with asymptotically self-similar solutions is investigated. The method applies to the solutions of the Boltzmann, Landau and BGK equations. In the case of the Vlasov-F...

متن کامل

Discontinuous Galerkin Solver for the Semiconductor Boltzmann Equation

We present preliminary results of a discontinuous Galerkin scheme applied to deterministic computations of the transients for the Boltzmann-Poisson system describing electron transport in semiconductor devices. The collisional term models optical-phonon interactions which become dominant under strong energetic conditions corresponding to nanoscale active regions under applied bias. The proposed...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Physics Communications

سال: 2021

ISSN: ['1879-2944', '0010-4655']

DOI: https://doi.org/10.1016/j.cpc.2021.107877